
 

 

 

THE NECESSITY OF QUANTUM MECHANICS 
 

 

   

  Abruptness and abstruseness of the usual formulations 

 

 

 0) Historical necessity 

 

 1) Deforming the Poisson bracket 

 

 2) Quantum logic 

 

 3) Hardy's reasonable axioms 

  



DEFORMING THE POISSON BRACKET 

 

Dirac 1926       ],[)(},{ 1
gf

 igf  

 

Weyl 1927        
 



 dddde),(
4

1 )]()(i[

2
pqpqg pq pq

g  

 

Wigner 1932      ''e'd2),( /'i2 qqqqqpq pq
ρ

  

 

Moyal and Groenewold 1940s:   fg


gfgf qppq ))(2/i(
e




 

 

                       ],[}},{{i gf gffggf   

 

Quantum mechanics in phase space:  }},{{  H  

 

 

Vey 1975: Moyal bracket rediscovered as continuous one-parameter deformation 

of the Poisson bracket. 

 

Lichnerowicz 1979 and Gutt 1979:  This deformation is essentially unique!  



 

 

DEFORMING THE POISSON BRACKET 

 

 

 

Mathematical necessity of quantum mechanics 

 

Transcendental necessity of Lie algebras of evolution (Poincaré) 

 

Daniel Sternheimer:  

 

A word of caution may be needed here. It is possible to intellectually imagine 

new physical theories by deforming existing ones …. Nevertheless such 

intellectual constructs, even if they are beautiful mathematical theories, need to 

be somehow confronted with physical reality in order to be taken seriously in 

physics. So some physical intuition is still needed when using deformation theory 

in physics.  

  



QUANTUM LOGIC 

 

Neumann's spectral theorem (1930): 
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 dPP  is the orthogonal projector in Hilbert space associated with the 

proposition "The value of the observable G belongs to the subset  ." 

 

Neumann and Birkhoff 1936 

 

Lattice of subspaces    Lattice of binary propositions 

 

ba   ba   ba  a  0 1 

BA  BA  BA  A  }{0  H 

 

For finite dimension, this lattice is modular: If ca  , then .)()( cbacba   

 

 1) Is every orthocomplemented modular lattice isomorphic to the    

  lattice of subspaces of a Hilbert space? 

 2) Are the axioms of such a lattice natural for Yes-No experiments?  



QUANTUM LOGIC (question 1) 

 

An irreducible complemented modular lattice is isomorphic to a projective 

geometry of the same dimension. 

 

A projective geometry is isomorphic to the set of subspaces of a vector space 

over a field K with the operations   and +. 

 

If the lattice is orthocomplemented, the field K admits a * conjugation similar to 

complex conjugation and the vector space admits a sesqui-linear form similar to 

the Hermitian form of a Hilbert space. 

 

C is not the only possibility. 

 

Piron 1964: generalization to infinite dimension. 

 

Mackey 1957: definition of states through probability of Yes for all Yes-No 

questions. Hence a state is a probability measure on the subspaces of a Hilbert 

space. 

 

Gleason's theorem (1957): Such states must be described by a density matrix. 



QUANTUM LOGIC  (question 2) 

 

 

Implication, meet, and join have natural definitions for finite dimension. 

 

Modularity is more difficult to justify.  

 

Piron: For finite dimension, it is equivalent to atomicity and weak modularity. 

 

Piron: Weak modularity justified by non interference of measurement of b with 

measurement of a when ba  . 

 

Piron: Atomicity (covering law) justified by existence of repeatable maximal 

measurements (defining pure states). 

 

More problematic if infinite dimension. 

 

Motivations: mathematical fertility (Neumann), most adequate language (Piron 

and Jauch), not so much insistence on necessity. 

  



 

 

HARDY'S REASONABLE AXIOMS (2001) 

 

 

Quantum theory is simply a new type of probability theory. Like classical 

probability theory it can be applied to a wide range of phenomena. However, the 

rules of classical probability theory can be determined by pure thought alone 

without any particular appeal to experiment (though, of course, to develop 

classical probability theory, we do employ some basic intuitions about the nature 

of the world). Is the same true of quantum theory? Put another way, could a 19th 

century theorist have developed quantum theory without access to the empirical 

data that later became available to his 20th century descendants? In this paper it 

will be shown that quantum theory follows from five very reasonable axioms 

which might well have been posited without any particular access to empirical 

data. 

 

Hardy directly exploits a statistical definition of states, without the quantum-

logic background.  



HARDY'S REASONABLE AXIOMS 

 

 

D1: Quantity measurements have a maximal number N of discrete outcomes. 

H1: Probabilities. The relative frequency of a given outcome has a definite limit 

when the measurement is indefinitely repeated.  

 

D2: K is the minimal number of probabilities necessary to characterize the state 

of the system. 

H2: Simplicity. K takes the minimum value consistent with the axioms. 

 

H3: Subspaces. A system whose state is constrained to belong to an M-

dimensional subspace … behaves like a system of dimension M. 

 

H4: Composite systems. A composite system consisting of subsystems A and B 

satisfies BANNN  , BA KKK ''' . 

 

H5: Continuity. There exists a continuous reversible transformation on a system 

between any two pure states of that system. 

 

  



 

 

HARDY'S REASONABLE AXIOMS 

 

 

These axioms lead to the matrix-density representation of states. 

 

The simplicity axiom is not necessary (Dakić and Brukner). 

 

All axioms except the subspace axiom can be justified by considerations of 

correspondence. 

 

The continuity axiom can be replaced by information-theoretic axioms, for 

instance the assumption that two-level systems carry one bit of information. 

Physical necessity seems lost in this process. 

  



CONCLUSIONS 

 

1) Starting from classical mechanics, deformation of Poisson bracket shows 

mathematical, perhaps transcendental necessity of the whole quantum mechanics 

(including the expression of the Hamiltonian). 

 

2) Starting from a very basic notion of experimentation, quantum logic shows 

necessity of K*-space structure for finite dimension. It requires difficult math. It 

does not exclude K  fields differing from C. It does not specify the Hamiltonian.  

 

3) Starting from statistics of discrete measurements, Hardy axiomatics leads to 

the density-matrix representation of states. It implicitly assumes some 

correspondence with classical description, and it does not specify the 

Hamiltonian. 

 

 

Sources of quantum weirdness: negative probabilities in the deformation 

approach, incompatible measurements in quantum logic, blending of discrete 

measurement outcomes with continuous possibilities of measurements in Hardy 

axiomatics. 


